Rings such that, for each unit u, u − u^n belongs to the Jacobson radical

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the Nilpotency of the Jacobson Radical of Semigroup Rings

Munn [11] proved that the Jacobson radical of a commutative semigroup ring is nil provided that the radical of the coefficient ring is nil. This was generalized, for semigroup algebras satisfying polynomial identities, by Okniński [14] (cf. [15, Chapter 21]), and for semigroup rings of commutative semigroups with Noetherian rings of coefficients, by Jespers [4]. It would be interesting to obtai...

متن کامل

The Upper Nilradical and Jacobson Radical of Semigroup Graded Rings

Given a semigroup S, we prove that if the upper nilradical Nil∗(R) is homogeneous whenever R is an S-graded ring, then the semigroup S must be cancelative and torsion-free. In case S is commutative the converse is true. Analogs of these results are established for other radicals and ideals. We also describe a large class of semigroups S with the property that whenever R is a Jacobson radical ri...

متن کامل

Fundamentality of a cubic unit u for ℤ[u]

Consider a cubic unit u of positive discriminant. We present a computational proof of the fact that u is a fundamental unit of the order Z[u] in most cases and determine the exceptions. This extends a similar (but restrictive) result due to E. Thomas. Introduction Let f(X) := X + aX + bX ± 1 ∈ Z[X] be irreducible in Z[X] and with three (distinct) real roots. We think of the order R := Z[u], obt...

متن کامل

On the Jacobson radical of strongly group graded rings

For any non-torsion group G with identity e, we construct a strongly G-graded ring R such that the Jacobson radical J(Re) is locally nilpotent, but J(R) is not locally nilpotent. This answers a question posed by Puczy lowski.

متن کامل

Rings and Algebras the Jacobson Radical of a Semiring

The concept of the Jacobson radical of a ring is generalized to semirings. A semiring is a system consisting of a set S together with two binary operations, called addition and multiplication, which forms a semigroup relative to addition, a semigroup relative to multiplication, and the right and left distributive laws hold. The additive semigroup of S is assumed to be commutative. The right ide...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Hacettepe Journal of Mathematics and Statistics

سال: 2020

ISSN: 2651-477X

DOI: 10.15672/hujms.542574